Hierarchical Teams in a
Single-Program, Multiple-
Data Execution Model
Amir Kamil and Katherine Yelick

DEGAS Retreat
June 4, 2013

= Hierarchical Machines

% Parallel machines have hierarchical structure

Dual Socket AMD
MagnyCours

Quad Socket Intel
Nehalem EX

< Expect this hierarchical trend to continue with
manycore

Application Hierarchy

BERKELEY PAR LAB

< Applications can reduce communication costs by
adapting to machine hierarchy
Slow, avoid

0,1,2,3,4,5
Fast, /\
allow

0,1,2 3,4,5

inherent, algorithmic hierarchy / \

= Recursive algorithms 0|1
= Composition of multiple algorithms

= Hierarchical division of data

< Applications may also have 0, 1 \ 2 \ 3,4 \ 5 \
3 4

Single Program, Multiple Data

< Single program, multiple data (SPMD): fixed set
of threads execute the same program image

public static void (String[] args) {
System.out.println("Hello from " + Ti.thisProc())
Ti.barrier () ;
if (Ti.thisProc() == 0)
System.out.println("Done.") ;

... Algorithm Example: Merge Sort

Computer Sciences

< Task parallel
int[] (int[] data) {
int len = data.length;
if (len < threshold)
return sequentialSort (data);
dl = fork mergeSort(data[0:len/2-1]);
d2

join dl;

mergeSort (data[len/2:1en-1]) ;

return merge (dl, d2);

}
< Cannot fork threads in SPMD
= Must rewrite to execute over fixed set of threads

Algorithm Example: Merge Sort

BERKELEY PAR LAB
<+ SPMD
int[] (int[] data,Gnt[] idsk—— Team

int len = data.length;

int threads = ids.length;

if (threads == 1) return sequentialSort (data);

if (myId in ids[0:threads/2-1])

dl = mergeSort(data[0:len/2-1],
ids[0:threads/2-11]) ;

else
d2 = mergeSort(data[len/2:1len-1],
ids ~ threads-1]) ;
arrier(iéEI? Téan?
Collective

if (myId == ldS[O]) Lt LuLu wmerye (dl, d2),’

Thread Teams

< Thread teams are basic units of cooperation

= Groups of threads that cooperatively execute code
» Collective operations over teams

< Other languages have teams
= MPI communicators, UPC teams

<+ However, those teams are flat

= Do not match hierarchical structure of algorithms,
machines

= Misuse of teams can result in deadlock
Team tl = new Team(0:7) ;
Team t2 = new Team(0:3) ;
if (myId == 0) barrier(tl);

else barrier (t2);

Structured Teams

< Structured, hierarchical teams are the solution
= Expressive: match structure of algorithms, machines
= Safe: eliminate many sources of deadlock
= Analyzable: enable simple program analysis

= Efficient: allow users to take advantage of machine
structure, resulting in performance gains

Team Data Structure

< Threads comprise teams in tree-like structure

< First-class object to allow easy creation and
manipulation

0,1,23,4,5,6,7,8,9,10, 11

e B

0,1,2,3 4,5,6,7 8,9, 10,11

AN AN

1,3,2 0 9,8 10, 11

3= Machine Structure

< Provide mechanism for querying machine
structure and thread mapping at runtime

Team T = Ti.defaultTeam() ;

0,1,2,3,4,5,6,7

>

4,5,6,7

2,3 4,5

N

6, 7

10

Language Constructs

<+ Thread teams may execute distinct tasks

partition(T) {
{ model fluid(); }
{ model muscles(); }
{ model electrical(); }

}
< Threads may execute the same code on
different sets of data as part of different teams

teamsplit (T) {
row_reduce() ;

}
< Scoping rules prevent some types of deadlock
= Execution team determined by enclosing construct

11

3= Partition Semantics

% Different subteams of T execute each of the

branches
partition(T) {

todel fluid () }

{/model muscles (), }

(@lectrical

0,1,23,4,5,6,7,8,9,10, 11

‘ 8,910, 11

12

== Teamsplit Semantics

% Each subteam of rowTeam executes the
reduction on its own

teamsplit (rowTeam) {

Reduce.add (mtmp, myResults0, rpivot);

e e
\\\
T1 —0 | 1 [2 3
| | |
T2 = — | 5 6 7
A\\\
T3 —8 o | T0 11

13

Multiple Hierarchy Levels

< Constructs can be nested
teamsplit (T)
teamsplit (T.myChildTeam()) {
levell work();

}
level2 work();

}
< Program can use multiple teams

teamsplit (columnTeam) {

myOut.vbroadcast (cpivot) ;

}

teamsplit (rowTeam) {

Reduce.add (mtmp, myResultsO, rpivot);

BERKELEY PAR LAB

14

Sorting

< Distributed sorting application using new
hierarchical constructs

< Three pieces: sequential, shared memory, and
distributed
= Sequential quick sort from Java 1.4 library
» Shared memory merge sort
» Distributed memory sample sort

15

== Shared Memory Sort

< Divide elements equally among threads
» Each thread processes its elements sequentially

<+ Merge in parallel
= Number of threads halved in each iteration

Thread O Thread 2 Thread 3

RN
\Thread O/ \Thread 2/

Thread O

16

...z Shared Memory Hierarchy

Computer Sciences

< Team hierarchy is binary tree
< Trivial construction

static void (Team t) {
if (t.size() > 1) {
t.splitTeam(2) ;
divideTeam(t.child (0)) ;

0,1,2,3,4,5

AN

O/ 112 314)5

divideTeam(t.child (1)) ;

}

0,1

2 3,4

[\

5

}

< Threads walk down to bottom
of hierarchy, sort, then walk

0

1 3 4

back up, merging along the way

17

...z SMP Sort and Merge Logic

Computer Sciences

BERKELEY PAR LAB

< Control logic for sorting and merging

static single void (Team t) {
if (Ti.numProcs() == 1) {
allRes[myProc] = sequentialSort (myData) ;
} else {

teamsplit(t) {
sortAndMerge (t.myChildTeam()) ;
}

Ti.barrier () ;
if (Ti.thisProc() == 0) {
int otherProc = myProc + t.child(0) .size();
int[1d] myRes = allRes[myProc];
int[1ld] otherRes = allRes[otherProc];
int[1d] newRes = target(t.depth(), myRes, otherRes);
allRes [myProc] = merge (myRes, otherRes, newRes);

18

Algorithms for Hierarchical

Machines

< Three strategies for hierarchical machines (e.g.
clusters of SMPs):

* Treat the machine as a flat collection of processors
that don’t share memory

= Compose a distributed communication library (e.g.
MPI) with a shared memory library (e.g. Pthreads)

* Implement a hierarchical algorithm that takes
advantage of both shared memory and all available
concurrency

<+ Sort example:
» Pure sample sort treats the machine as flat

= Hierarchical sort uses sampling/distribution between
shared-memory domains, SMP sort in a node

19

Flat vs. Hierarchical Sort

Distributed Sort (Cray XE6)
(10,000,000 elements/core, 10,000 samples/core)

™ flat (distribution)
™ flat (sort)

hierarchical (distribution)

® hierarchical (sort)

1 |'|'|'|'|'|I

NUMA Nodes (6 cores/node)

256 512

20

=1 = Communication Concurrency

Sort Communication Concurrency (Cray XE6)

(10,000,000 elements/core, 10,000 samples/core)
-1 thread/node -*6 threads/node

N
o

N N =
N B O 00

3

Distribution Time (s)
—_
o

4 8 16 32 64 128 256
NUMA Nodes (6 cores/node)
21

=1 = Communication Concurrency

Stencil Communication Concurrency
(2563 Points/Node, 100 Timesteps, Cray XE6)

-1 thread/node -*6 threads/node

+/

~
U

@)
N

3

) .
(€, BT, B)

Total Time (s)

B
O

4 8 16 32 4 128 256 512
NUMA Nodes (6 coresinode)

22

Dynamic Alignment of

Collectives

< Misaligned collective operations can result in
deadlock

< Enforcing textual alignment of collectives at
runtime can provide safety and analyzability
while minimizing programmer burden

< Basic idea:
= Track control flow on all threads

= Check that preceding control flow matches when:
« Performing a team collective
- Changing team contexts

< Compiler instruments source code to perform
tracking and checking

23

= = Checking Example

5 1if (Ti.thisProc() == 0)

6 Ti.barrier () ;

Meaningful error
.‘ 7 else generated
8 Ti.barrier(); local hash

|
Thread Hash Hash from C MISALIGNMENT

0 x0e8& ERROR 3a6fa0
|

1 ‘Ox96276933 0x7e8a6fao | ...

* Entries prior to line 5

24

Overhead of Dynamic Alignment A

IS Minimal

Cluster Applications Time |
FoCcessSors
27488 %16 832

=
N

=

o
0o

Time Relative to Static
o
(@))

0.4
0.2
0
£ \bﬁ% & \bep"% & \bﬁ% & \bﬁ% £ \bep"% & \bﬁ%
& 20 & 3 & 2

£ ca’ N N £ oue e

Conclusions

< Hierarchical language extensions simplify job of
programmer

= Can organize application around machine
characteristics

= Easier to specify algorithmic hierarchy
» Seamless code composition

= Better productivity, performance with team collectives
- See poster for details

< Language extensions are safe to use

= Safety provided by lexical scoping and dynamic
alignment checking

26

This slide intentionally left blank.

27

